An Efficient Personalized Hotel Recommendation System for Big Data Applications
Abstract
for giving proper proposals to clients. In the most recent decade, the measure of clients,
administrations and online data has developed quickly, yielding the enormous information
examination issue for administration recommender frameworks. Also the greater part of existing
administration recommender frameworks, exhibit the same appraisals and rankings of
administrations to distinctive clients without considering various clients' inclination, and hence
neglects to meet clients' customized necessities. Consequently we approach a customized
administration proposal rundown for the most suitable administrations to clients, by proposing a
keyword-aware suggestion strategy and Natural Language Processing, to address the above
difficulties. Particularly, keywords are utilized to demonstrate clients' inclination, and a client based
Collaborative Filtering calculation is received to create proper suggestions. To enhance its versatility
and productivity in vast information environment, it is actualized on Hadoop platform, a generally
embraced appropriated figuring stage utilizing the Map Reduce parallel transforming framework. At
long last, far reaching trials are directed on certifiable information datasets, and results exhibit that
personalized search technique fundamentally enhances the exactness and versatility of
administration recommender frameworks over existing methodologies.
Key words: Recommender System, Preference, Keyword, Big Data, Map Reduce, Hadoop, Hotels.
Full Text:
PDF 56-65References
Fay, Ch., Jeffrey, D., Sanjay, Gh., Wilson, C., Hsieh, Deborah, A. W.M.B., Tushar, Ch., Andrew, F., Robert, E.G. (2006).Bigtable: A Distributed Storage System for Structured Data.
Araujo, L., Pérez-Agüera., José, R. (2006). Enriching thesauri with hierarchical relationships by pattern matching in dictionaries. ,FinTAL - 5th International Conference on Natural Language Processing: 268-279.
Adomavicius, G., Kwon, Y. (2007). New Recommendation Techniques for Multicriteria Rating Systems, IEEE Intelligent Systems; 22(3): 48-55.
Kambatla, K., Pathak, A., Pucha, H. (2009). Towards Optimizing Hadoop Provisioning in the Cloud, Proc. Conf. Hot Topics in Cloud Computing HotCloud.
Ibrahim, S., Jin, H., Lu, L., Qi, L., Wu, S., Shi, X. (2009). Evaluating Map Reduce on virtual machines: The Hadoop case, Cloud Computing: 519–528.
Goldberg, D., Nichols, D., Brian, M.O., Douglas, T. (1992).Using collaborative filtering to weave an information Tapestry, Communications of the ACM; 35(12):61-71.
Kejiang, Y., Xiaohong, J., Yanzhang, H., Xiang, L., Haiming, Y., Peng, H. (2012). Hadoop: A Scalable Hadoop Virtual Cluster Platform for Map Reduce-Based Parallel Machine Learning with Performance Consideration.
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
World of Researches Publication